The Power of Grid Monitoring From Challenge to Solution

Frank Drumm General Manager Grid Monitoring

Robert Roy Smart Grid Consultant for North America

EVERY CONNECTION COUNTS

Agenda

- 1 The Evolution from **Conventional to Smart Grids**
- 2 **Overhead** Distribution Lines: Challenges and Solutions
- 3 **Underground** Distribution Lines: Challenges and Solutions
- 4 Underground Safety and Asset Management

5 Q&A

Emerging Challenges in Distribution Grids

In 2030, 20% of our global energy will rely on wind power, and the demand for solar power continues to grow.

As the emergence of points of power generation multiples, the **increased power flow is adding pressure on grids** that have already been running for decades.

With the demand for energy growing exponentially, it is essential that grids can manage the increased electrical stress, in order to **avoid disruption to your network**.

Relying on a **smart grid** can help you:

- Improve safety for operators and people
- Improve the reliability of your grid
- Achieve network automation and remote control

From Conventional to Smart Grids

CONVENTIONAL GRIDS

- No monitoring or remote control
- Uni-directional power flow from large power plants to end consumer

WHAT IS CHANGING?

- Distributed power generation
- Rising expectations for power quality and power availability
- Increased demand on electricity (eg: charging stations)
- Aging infrastructures

CONSEQUENCES

- Unstable power supply
- More frequent and longer duration of unpredicted faults

Resulting in:

- Economic consequences of power loss
- Occupational risk and safety

THE SOLUTION: INCREASE NETWORK VISIBILITY AND TRANSPARENCY

- Power presence monitoring
- Fault monitoring
- Power flow monitoring

Evolving Needs Require Evolving Solutions

As the grid evolves more complex and the energy flow increases, it is even more critical to:

- Prevent outages before they happen
- When outage happen, quickly act at the source
- Keep maintenance costs as low as possible

Unplanned Outages for Utilities

With more than 150,000 miles of power lines, the US power grid is one of the largest worldwide. Overhead lines are key to connect the network: from generation, to transmission and distribution. They are also the most vulnerable when it comes to weather and animal-related challenges.

A common way to track down time for utilities is **System Average Interruption Duration Index (SAIDI)**. Being able to efficiently restore power reduces the impact of unplanned faults.

Grid monitoring solutions can help you **locate faults** on underground and overhead distribution power lines **increasing grid reliability and safety.**

Average duration of total annual interruptions in electricity service in Germany (largely underground networks) - minutes per customer 21,53 20 GRID 15,31 15,14 14,90 12,70 12,80 SMART 2008 2010 2011 2012 2013 2014 2015 2007 2009 2016

*Source: US Energy Information Administration, Annual Electric Power Industry Report

Unplanned Outages for Data Centers

With an ever-evolving landscape in computing and the increasing need for cloud storage, there is one thing that must remain constant: your power supply.

To achieve the **industry's standard uptime of Five-9s** (99.999%), reliable power delivery is essential. As a result, data centers have always had monitoring and control in place, however, it is possible to make improvements in personal safety and facility awareness by increasing power monitoring.

To achieve that, you will need:

- **Connections** that are reliable and high-performing
- Voltage monitoring devices, for personal safety
- To detect and locate faults as quickly as possible

The average cost of an outage in a data center is estimated to

in lost revenue per minute*

*<u>Source:</u>

https://www.vertiv.com/globalassets/documents/reports/2016-cost-of-data-center-outages-11-11_51190_1.pdf

The Real Cost of Power Outages

4.7 hours

The average total annual interruption in electricity service hours per customer in the US

~2 hours

The average interruption per customer annually excluding major events

100,000 USD

The average cost of an outage for a Utility per hour

Overhead Distribution Lines

Challenges and Solutions

EVERY CONNECTION COUNTS

Outages Cannot Be Completely Eliminated

Yes, outages will keep happening.

All overhead lines are exposed to:

- Forces of nature (wind, lightning, ice)
- Vegetation contact
- Wildlife intrusion
- Vehicle collisions
- Wildfires
- Equipment failures / aging infrastructure

Outages be reduced with protective equipment or practices, but <u>not</u> completely eliminated.

11 RAYCHEM • AMP • BOWTHORPE EMP • CROMPTON INSTRUMENTS • KRIES • SIMEL • UTILUX

An Outage Happened. What Now? Time is money! You must aim at FLISR, safely and quickly

F ault L ocation I solation & S ervice R estoration

What tools are available?

SCADA systems

Relay event records

CHALLENGE: Vast areas are unmonitored, require visual inspection.

How do Grid Operators Find Faults?

Conventional grids require a troubleshooter to "ride out" the circuit... BUT

- Circuits may be less than a mile to over 40 miles long
- Some parts not street accessible
- Circuits likely have multiple branches
- The process can take an hour, 4
 hours or more!

Benefits of Fault Current Indicators

A fault indicator is a device placed directly on the overhead conductor which provides visual or remote indication of a fault on the electric power system.

Fault is located between the last indicating and the first non-indicating fault indicator.

How is a fault indicator used?

- Troubleshooters will see if the fault indicator is flashing.
- **Communicating fault indicators** can also notify Operations, Engineering, or SCADA master system.

Overhead Fault Detection

Do you have any experience with overhead fault indicators?

Yes, we already use them

No, but I plan to install them

No, I don't know much

Local and Remote Indication Systems

Sends alerts over 4G (SMS)

RAYCHEM • AMP • BOWTHORPE EMP • CROMPTON INSTRUMENTS • KRIES • SIMEL • UTILUX 15

Device Integration with SCADA

Use Case: Long Circuits

Challenges

May take hours to find fault: time is money!

May have **multiple branches**.

- Segment circuit into smaller parts with fault indicators.
- One set breaks circuit in half, cutting inspection time in half.
- Add more fault indicators to further reduce time to find fault proportionally.

May require walking out circuit

- ➡ May require **special vehicle** or boat
- May require long drive to access

Challenges

Solution

Rivers, swamps, rear easements, fenced property

• Place fault indicators on source edge of difficult area.

Pole

• If fault indicators **<u>not</u> flashing**, no need to enter.

Use Case: Difficult to Access Areas

Fault indicator

Pole

Use case: Underground Substation Feeder Getaways »

Challenges

- Circuit lockout and restoration require different response
- Need to rule out **fault in the underground getaway**
 - Close-in fault would damage substation transformer
 - Specialized crews/equipment needed to test getaway
 - Adds time to the restoration process, could be hours

Solution

- Place fault indicators on transition point.
- If fault indicators **flashing**, fault is <u>not</u> in the underground getaway.

Use Case: Problematic Circuits

Challenges

May have **chronic momentary outages**.

May cause **regulatory risk.**

Solution

- **Strategically place** fault indicators on circuit
- Use to **narrow down to location** of problem
- Repeat until problem(s) identified •

Pole Fault indicator

Underground Distribution Lines

Challenges and Solutions

EVERY CONNECTION COUNTS

Do you have any experience with fault indicators for Underground Residential Distribution (URD) Transformers?

Yes, we already use them

No, but I plan to install them

No, I don't know much

Underground Residential Distribution (URD)

Single Phase circuits

Underground cables connect to **pad-mounted transformers Easement** will be in the front or rear of homes

Transformer

Locating Faults in URDs

Fault condition occurs...

Fuse protection for loop or radial circuit will open

Challenge: Little knowledge of fault location

- Troubleshooting and repairs are time-consuming
 - Transformer vs. cable restoration requires different crews/equipment
 - Typical outage is 4+ hours
- Rear easement URD especially difficult

Solution: Equip pad-mounted transformers with fault indicators

- Fault located between last indicating and first non-indicating
- Add more indicators to make segments small

URD Radial Design Example

Fault Current Indicators for for URD Pad-mount Transformers

Benefits

- 1. Find faults more quickly, reduce SAIDI
- 2. Distinguish between transformer fault and cable fault Enables you to bring right crew, right equipment. Significant time savings!
- 3. Self-powered device
- 4. Field configurable
- 5. No minimum load current needed
- 6. Coordinated with fuse curves

.

Do you see value in a device that can distinguish between an underground outage caused by a transformer vs. the underground cable?

Yes, and I'd like to learn more

Yes, and I already use one

No, we don't have that issue

Underground Safety and Asset Management

Challenges and Solutions

EVERY CONNECTION COUNTS

Improving Safety for Operators

Permanently installed Voltage Detection and Indicating Systems (VDIS) offer improvement over current procedures for confirming proper de-energization.

Today, the operator needs to use a hot stick with a voltage detector. It is the most common method today, and yet very dangerous as the operator is potentially exposed to an immediate arc flash hazard.

VDIS can bring:

- Improved safety: eliminating the operator's exposure to potential hazards
- Confidence: permanently installed device vs. handheld device
- Ability to check for voltage presence and phasing at included test points.

Operator using a hot stick with a voltage detector

Permanent Voltage Detection and Indicating System

Voltage Detection System – Easily Retrofitable

Gas Insulated Switchgear

Bushing with capacitive tap

C1 – 250A elbow

Air Insulated Switchgear

TE Kries CAPDIS Features

- MV 1–52KV; HV 53-480KV
- Integrated self-test
- Front display with LED
- Relay contacts for interlock, remote indication and SCADA input
- Live Partial Discharge
 Detection

Voltage Detection and Partial Discharge Indication

TE Kries CAPDIS R5 can detect partial discharges within switchgears in:

- 1. Cable terminations / elbows
- 2. Busbars
- 3. Transformer
- 4. Adjacent splices

"TE PD !" appears when Partial Discharge threshold is exceeded (not phase selective)

Key Takeaways from Today's Webinar

- We have looked at bothoverhead and
- underground challenges and solutions.

CAPDIS allows for **live monitoring of asset health**, such as transformers and switchgear serving critical customers.

Fault indicators can save you hours of downtime by quickly highlighting outage sources.

By implementing the right **VDIS**, we can also enhance safety for operators.

But there is a lot more we can do to make your grid more reliable!

Q&A

Frank Drumm

General Manager Grid Monitoring Solutions *TE Connectivity*

fdrumm@te.com

Robert Roy Smart Grid Consultant for North America TE Connectivity

bob.roy@te.com

CONTACT US FOR MORE INFO

EVERY CONNECTION COUNTS

